$y=x^2$ $-2≦x≦3$のときのyの値域(変域)を求めてください。

yの値域を求めることは、yの最小値と最大値を求めて最小値≦y≦最大値と表示することです。

$y=x^2$は上に凸の放物線ですから、$x=0$でyは最小値0、$x=3$でyは最大値9をとります。

したがって答えは0≦y≦9です。

$-2≦x≦3$の表示につられてかどうかはわかりませんが、4≦y≦9としていまう生徒さんが多いので気をつけましょう。

コメントをどうぞ

メールアドレスが公開されることはありません。 が付いている欄は必須項目です