$(a^2+a+1+\displaystyle\frac{1}{a}+\frac{1}{a^2})(a^2-2a+3-\displaystyle\frac{4}{a}+\frac{5}{a^2})$を展開したときの$a$の係数を求めなさい。

降べきの順に並んでいることを確認し、掛けてxについての同類項になる項の和だけを計算します。

$a^2\cdot(-\displaystyle\frac{4}{a})+a\cdot3+1\cdot(-2a)+\displaystyle\frac{1}{a}\cdot a^2$

$=-4a+3a-2a+x=-2a$

即ち、答えは$-2$

コメントをどうぞ

メールアドレスが公開されることはありません。 が付いている欄は必須項目です